This article was downloaded by: On: *24 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Quasiliving Carbocationic Polymerization. III. Quasiliving Polymerization of lsobutylene

J. Puskás^{ab}; G. Kaszás^{ac}; J. P. Kennedy^a; T. Kelen^{ac}; F. Tüdös^d

^a Institute of Polymer Science, The University of Akron, Akron, Ohio ^b Technical Research Institute for Electronics, Budapest, Hungary ^c Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, Hungary ^d Central Research Institute for Chemistry Hungarian Academy of Sciences, Budapest, Hungary

To cite this Article Puskás, J. , Kaszás, G. , Kennedy, J. P. , Kelen, T. and Tüdös, F.(1982) 'Quasiliving Carbocationic Poiymerization. III. Quasiliving Polymerization of Isobutylene', Journal of Macromolecular Science, Part A, 18: 9, 1229 – 1244

To link to this Article: DOI: 10.1080/00222338208077220 URL: http://dx.doi.org/10.1080/00222338208077220

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Quasiliving Carbocationic Polymerization. III. Quasiliving Polymerization of Isobutylene

J. PUSKAS, * G. KASZAS, † J. P. KENNEDY, and T. KELEN†

Institute of Polymer Science The University of Akron Akron, Ohio 44325

F. TÜDÖS

Central Research Institute for Chemistry Hungarian Academy of Sciences 1525 Budapest, Hungary

ABSTRACT

The polymerization of isobutylene has been investigated by the use of the steady, slow, continuous monomer addition technique in the presence of a variety of initiating systems, i.e., ''H₂O''/TiCl₄, ''H₂O''/AlCl₃, C₆H₅C(CH₃)₂Cl/TiCl₄, p-ClCH₂·C₆(CH₃)₄·CH₂Cl/AlCl₃ at -50°C. Quasiliving polymerizations have been obtained with the ''H₂O'' and C₆H₅C(CH₃)₂Cl/TiCl₄ systems in 60/40 v/v n-hexane/methylene chloride solvent mixtures with very slow monomer input. After a brief ''flash'' polymerization, the \overline{M}_n of PIB increased linearly with the cumulative amount

^{*}Visiting scientist. Permanent address: Technical Research Institute for Electronics, Budapest, Hungary.

[†]Visiting scientist. Permanent address: Central Research Institute for Chemistry, Hungarian Academy of Sciences, 1525 Budapest, Hungary.

of monomer added (consumed); however, the number of polymer molecules formed also increased, indicating the presence of chain transfer to monomer. With the "H₂O"/TiCl₄ initiating system, $\overline{M}_{n,\max}$ was 56,000 and $\overline{M}_W/\overline{M}_n < 2.0$. By the use of the $C_6H_5C(CH_3)_2Cl/TiCl_4$ initiating system, quasiliving polymerization has been achieved and chain transfer could virtually be eliminated.

INTRODUCTION

Subsequent to the discovery of quasiliving carbocationic polymerization of α -methylstyrene in our laboratories [1], several other monomers have also been found to behave similarly, i.e., isobutyl vinyl ether [2], methyl vinyl ether [3], p-t-butylstyrene [4], and styrene [5]. Investigations have also been carried out to demonstrate quasiliving polymerization with isobutylene; however, initial experiments gave inconclusive data and were in need of confirmation. This paper concerns a detailed investigation of quasiliving polymerization of isobutylene, a discussion of advantages/disadvantages of several initiating systems and monomer addition techniques, and the results of several series of experiments which illustrate the limitation of the quasiliving technique with this monomer.

EXPERIMENTAL

Materials

Isobutylene (IB) was dried by passing the gas through a column packed with a mixture of BaO and molecular sieves (4Å). n-Hexane was refluxed with concentrated H_2SO_4 , washed with distilled water, dried over molecular sieves (3Å), and distilled from CaH₂ under N₂.

Methylene chloride, n-propyl chloride, n-butyl chloride and chlorobenzene were purified as described [6]. Nitrobenzene was dried over molecular sieves (3Å) and fractionated twice from CaH₂ under vacuo. α -Methylstyrene was extracted with 10% aqueous NaOH, washed neutral with distilled water, dried over molecular sieves (3Å) and distilled from CaH under vacuo. Cumyl chloride (CC) (2-chloro-2-phenyl propane) was prepared from purified α -methylstyrene by hydrochlrination in methylene chloride solution; excess HCl and solvent were removed by repeated freeze-drying. p-Bis-chloromethyldurene was recrystallized from chloroform-petroleum ether solvent mixture. BF₃ and BCl₃ were condensed from a lecture bottle under N₂. SbCl₅ was distilled from P₂O₅ under vacuo. AlCl₃ [7] was purified by repeated extractions with methylene chloride till the solvent remained

FIG. 1. Special heated gas inlet used in the quasiliving polymerization of isobutylene.

colorless and AlCl₃-methylene chloride suspensions were used in the experiments. BF₃ OEt₂, SnCl₄, and TiCl₄ were distilled from P_2O_5 under N_2 .

Procedures

Polymerizations were carried out in a stainless steel enclosure under dry N_2 at -50°C in 300 cm³ three-neck round-bottom flasks equipped with stirrer, Teflon plug for monomer addition, and outlet for sampling. Liquid isobutylene was fed continuously from a reservoir by the application of N₂ pressure. Alternatively, gaseous monomer was fed continuously through a heated gas inlet (see Fig. 1). Samples (0.1 cm^3) were withdrawn with a precooled syringe from the reaction mixture and were injected into capped vials containing excess methanol. Polymerizations were stopped by adding methanol to the charge. Conversions were determined gravimetrically and were found to be 100% in every case. Molecular weights were determined by a Waters Associates High Pressure GPC apparatus equipped with four Microstyragel columns $(10^5, 10^4, 10^3, \text{ and } 500 \text{ \AA})$ and dual UV and RI detectors. Molecular weights were calculated from a calibration curve obtained with fractionated narrow molecular weight polyisobutylene standards.

RESULTS AND DISCUSSION

Quasiliving polymerization demands rapid initiation and the absence or reversibility of termination [1, 8]:

where k_t and k_{ri} stand for the rate constants of termination and reionization, respectively. The lifetime of the carbocation must be sufficiently long for propagation in the presence of slow, steady monomer addition. Homogeneous systems, weakly nucleophilic counteranions, and highly electrophilic solvents have also been found to be necessary to obtain quasiliving conditions.

In regard to the quasiliving polymerization of isobutylene, the reionization of the \sim CH₂(CH₃)₂Cl terminus by a Friedel-Crafts acid MtX_n (see above) is of paramount importance. While none of the con-

ventional Friedel-Crafts acids, e.g., $AlCl_3$, $SnCl_4$, $TiCl_4$, $SbCl_5$, are able to ionize t-BuCl (even the t-BuF/BF₃ or SbF_5 systems contain merely nonionic complexes with somewhat elongated C-F bonds, e.g., t-Bu-F \rightarrow BF₃) [9], the reionization of the tertiary Cl terminus in polyisobutylene is facilitated by internal strain [10]. Thus reionization, i.e., the backward reaction in the above equation, is expected to occur reasonably fast in the presence of AlCl₃ or TiCl₄.

A. Preliminary Studies

Experimentation to achieve quasiliving polymerization of isobutylene started by examining a series of promising Friedel-Crafts acids and solvent systems. Alkylated Friedel-Crafts acids (e.g., MeAlCl₂, Et₂AlCl) have not been tried because irreversible termination by alkylation with these Lewis acids [11] would have prevented reinitiation. Experiments with SnCl₄, SbCl₅ and BF₃ •OEt₂ did not produce polymer and with BF₃ only liquids (oligomers) were obtained with continuous, slow monomer addition, most likely because of relatively slow reinitiation. BCl₃ cannot be used because the BCl₄ \ominus counteranion is very unstable so that the above equilibrium is strongly displaced toward the right [12]. Trials with C₆ H₅ C(CH₃)₂Cl or p-ClCH₂. C₆ (CH₃)₄ •CH₂ Cl/AgSbF₆ also failed. Several series of experiments have been carried out with the "H₂O"/AlCl₃ initiating system; however, suitable conditions for quasiliving polymerization could not be found. Trials were also made with

combinations (prepared by mixing saturated AlCl₃ in CH₂Cl₂ solutions with p-bischloromethyldurene in CH₂Cl₂ and using the homogeneous deep red liquid in the charge); however, extensive chain transfer to the initiator prevented quasiliving polymerization. These failures, coupled with the difficulties encountered in the purification of AlCl₃ and the very low solubility of AlCl₃ in solvents suitable for quasiliving polymerization, prompted us to abandon experimentation with this salt. In view of promising preliminary results with TiCl₄ (indication of \overline{M}_n growth with slow monomer addition), it was decided to concentrate further investigations on TiCl₄-based initiating systems, i.e., C₆ H₅ C(CH₃)₂Cl/TiCl₄ and "H₂O"/TiCl₄.

A brief discussion in regard to solvent selection is necessary. A paramount requirement for quasiliving polymerizations is the homogeneity of the system, i.e., the charge including the polymer formed in the charge during experiment must always remain in solution. To meet this requirement a nonpolar solvent is called for; however, ionization of the initiating system and rapid cationation is facilitated by polar media. For stabilizing the counteranion a highly electrophilic solvent having a large acceptor number (AN) [13] is needed. To satisfy these opposing demands a variety of solvents have been examined, e.g., chlorobenzene, n-propyl chloride, n-butyl chloride, nitrobenzene; however, none of them was found to be entirely satisfactory.

After considerable experimentation a suitable compromise was found in the form of n-hexane/CH₂Cl₂ mixtures. Indeed, the best results were obtained in 60/40 v/v n-hexane/CH₂Cl₂ systems.

Thus on the basis of extensive preliminary experiments we selected TiCl₄-based initiating systems, i.e., $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$ and "H₂O"/TiCl₄, in 60/40 v/v n-hexane/methylene chloride solvent system for further studies on quasiliving polymerization of isobutyl-ene.

B. Quasiliving Polymerizations: The CC/TiCl₄/ IB and "H₂O"/TiCl₄/IB Systems

In view of extensive orienting experiments (see above) and some promising earlier investigations, detailed studies directed toward the definition of experimental parameters leading to quasiliving polymerization of isobutylene have been undertaken. A series of experiments with the $C_6H_5 C(CH_3)_2 C1/TiCl_4$ initiating system have been carried out in which a steady stream of liquid monomer was squirted into well-stirred initiator charges. Figure 2 shows

FIG. 2. Top: GPC traces of three polyisobutylene samples prepared by the CC/TiCl₄ initiating system using continuous liquid monomer addition. Normalized curves. Polymerization conditions: $V_0 = 50 \text{ cm}^3$, $[I]_0 = 2 \times 10^{-2} \text{ mol/dm}^3$, $[\text{TiCl}_4]_0 = 3.6 \times 10^{-2} \text{ mol/dm}^3$, $A = 6.25 \times 10^{-3} \text{ mol/min IB}$. Bottom: GPC traces of polyisobutylenes prepared by "controls." Polymerization conditions for Control 1: "H₂O"/TiCl₄ initiating system, $V_0 = 10 \text{ cm}^3$, $[\text{TiCl}_4] = 3.6 \times 10^{-2} \text{ mol/dm}^3$, $[M]_0 = 2.4 \text{ mol/dm}^3$. Polymerization conditions for Control 2: CC/TiCl₄ initiating system, $V_0 = 10 \text{ cm}^3$, $[I] = 2.0 \times 10^{-3} \text{ mol/dm}^3$, $[\text{TiCl}_4] = 3.6 \times 10^{-2} \text{ mol/dm}^3$. $[M]_0 = 2.4 \text{ mol/dm}^3$.

representative results of an experiment in which a series of samples has been withdrawn. The sequence of samples is given in the figure (for experimental details see the legend to Fig. 2).

According to the GPC traces, polyisobutylene samples withdrawn during a run exhibit two sets of peaks: one at higher molecular weights that remains unchanged during the experiment, and another that shifts toward higher molecular weights with monomer addition, i.e., exhibits quasiliving character. The set of peaks at the higher molecular weights is most likely due to initiation by "H₂O" (protogenic impurities) whereas the one gradually shifting toward higher molecular weights is probably due to the $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$ initiator system. This assumption has been borne out by a set of two "control" experiments, i.e., experiments in which the monomer was added in one rapid dose to stirred charges of "H₂O"/TiCl₄ and $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$, respectively. The positions of the GPC peaks obtained with the "H₂O"/TiCl₄ control on the one hand and those remaining unchanged at higher molecular weights in the continuous monomer addition experiment on the other hand coincide. Also, the bimodal GPC peak obtained with the $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$ control indicates a population at higher molecular weights, most likely due to "H₂O"/TiCl₄, and another at lower molecular weights arising from initiation by the $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$ system.

It is of interest to speculate why the \overline{M}_n 's obtained by the $''H_2O''/$

TiCl₄ system are consistently higher but remain unchanged whereas those produced by the C₆H₅C(CH₃)₂Cl/TiCl₄ combination are lower to start with but tend to undergo quasiliving growth. There is reason to believe that the counteranion TiCl₄OH^{\ominus} arising from the "H₂O"/TiCl₄ initiating system is more stable (less nucleophilic) than the TiCl₅ \ominus produced from the C₆H₅C(CH₃)₂Cl/TiCl₄ combination [14]; thus the "loser" propagating ion pair ~CH₂C^{\oplus}(CH₃)₂TiCl₄OH^{\ominus} propagates faster and produces higher \overline{M} polymer than the "tighter" ion pair ~CH₂C^{\oplus}(CH₃)₂TiCl₅ \ominus . Because of extremely rapid initiation and propagation in the presence of the TiCl₄OH^{\ominus} counteranion, initial mixing may be inadequate and the monomer concentration may locally remain high. The monomer is mainly used up by the more active "H₂O"/TiCl₄/IB system producing high \overline{M} polymer while the

rest of the monomer undergoes quasiliving polymerization with the $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$ initiating system.

Locally high monomer concentration could be avoided by perfect mixing so that termination by

may occur. Since excess TiCl₄ is available in the system, reinitiation could occur and after a while all the growing species would be $\sim CH_2C^{\bigoplus}(CH_3)_2 \cdot TiCl_5^{\bigoplus}$. In disagreement with earlier workers [9], termination by hydroxylation by TiCl₄OH^{\bigoplus} is thought to be much less likely than termination by chlorination.

To clarify the results discussed above, four series of experiments have been carried out with continuous slow addition of isobutylene to well-stirred "H₂O"/TiCl₄ charges. Table 1 shows the results. In the first series undiluted isobutylene was used. The \overline{M}_n 's are

2011
January
24
20:32
At:
Downloaded
_

TA) Mor	BLE 1. Nomer /	Polymeriz: Addition ^a	ation of Isobutylene with	T∕"O₅H"	'iCl₄ Initia	tting Sys	stem Using	Continuous]	Liquid
Sam	ıples	Time of sampling t (min)	Cumulative amount of consumed monomer $(mol \times 10^3)$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-3}$	$\overline{M}_{w}/\overline{M}_{n}$	$\begin{bmatrix} P \\ N \end{bmatrix}$	$\frac{\overline{\text{DP}}}{\times 10^{-2}}$	<u>DP</u> n, max calc	$[I]_{\circ} \times 10^4$ mol
1			$\mathbf{A} = 50.4 \times 10$	⁻³ mol/r	nin (undilu	ited)			
ΕF	12	1	50.4	75.8	1.91	0.37	13.5		
	13	2	100.8	82.9	1.84	0.68	14.8		
	14	ç	151.2	85.0	1.68	1.00	15.2		
	15	4	201.6	88.4	1.67	1.28	15.8		
	16	5	252.0	89.8	1.64	1.57	16.0		
		$A = 12 \times 10$	0 ⁻³ mol/min (dilute mon	omer: 5() vol% IB	+ 50 vol	% solvent r	nixture	
FF	17	ß	60	49.2	1.86	1.02	8.8		
	18	10	120	50.6	1.73	1.72	9.0		
	19	15	180	46.2	1.88	2.02	8.2		
	20	20	240	53,4	1.77	2.60	9.5		

PUSKAS ET AL.

5 L 1		18.3	1.97	0.87	3.3		
	5′ , 6 86 , 4	22.4	2.03 1.88	1.44 1.96	4.0 4.4	087	1 2
	115.2	28.4	1.96	2.26	5.1		1
	144	31.4	1.86	2.57	5.6		
	172.8	35.6	1.62	2.74	6.3		
	3×10^{-3} mol/min (dilute 1 24.2	monomer: 1	0 vol% IB -	l + 90 vol ⁶	% solvent mi	<u>xture)</u>	
	48.4	22.3	2.04	1.10	4.0		
	72.6	24.6	1.96	1.65	4.4		
	96.8	28.1	1.95	1.94	5.0 1	1000	0.96
	121.0	31.0	1.90	2.20	5,5		
	145.2	33.8	1.73	2.42	6.0		

 ${}^{4}V_{0} = 100 \text{ cm}^{3}$, [TiCl₄] $_{0} = 3.6 \times 10^{-2} \text{ mol/dm}^{3}$, T = 50° C; in every experiment conversion = 100%.

1237

FIG. 3. GPC traces of polyisobutylene samples obtained by " H_2O "/TiCl₄ initiating system using continuous addition of undiluted liquid monomer (Runs FF 12-16, Table 1).

relatively high and seem to be increasing with time. However, a closer inspection of the data and the GPC traces of the first and the last samples shown in Fig. 3 reveals that molecular weight growth is not due to quasiliving polymerization but rather to a progressing narrowing of the molecular weight distribution, i.e., to the disappearance of the low molecular weight tail. Conceivably, impurities in the system are gradually scavenged by the growing carbenium ions and the relative contribution of the low molecular weight fraction to the average molecular weights decreases. The fact that the number of macromolecules [P] (calculated by using [P] = At/ \overline{DP}_{p} and given,

for convenience, in moles) increases about fourfold during the run, indicates the presence of unacceptable chain transfer to monomer in the system. As discussed above, locally high monomer concentrations may have prevented the attainment of quasiliving conditions. Thus the next experiment was carried out with a dilute stream of monomer. According to the data in Table 1 (Experiments FF 17-20), however, quasiliving polymerization still could not be achieved.

Further reductions in the monomer addition rate led to more encouraging results: the \overline{M}_n 's of the samples increased with the

cumulative amount of monomer added (Experiments HH 6-11 with A = 2.88×10^{-3} and LL 1-6 with 1.6×10^{-3} mol IB/min, Table 1). These data are further illustrated by shifts of the monomodal GPC traces toward higher molecular weights in Fig. 4. Figure 5 shows

FIG. 4. GPC traces of polyisobutylenes prepared with the " H_2O "/TiCl₄ initiating system using continuous addition of diluted liquid monomer (Runs HH and LL, Table 1).

FIG. 5. \overline{M}_n vs monomer consumption plots of polyisobutylenes prepared with the ''H₂O''/TiCl₄ initiating system using continuous addition of diluted liquid monomer (Runs HH and LL, Table 1).

FIG. 6. [P] vs monomer consumption of polyisobutylenes obtained by "H₂O"/TiCl₄ initiating system using continuous addition of diluted liquid monomer (Runs HH and LL, Table 1).

the corresponding \overline{M}_n versus monomer consumption plot (since the conversion is complete, $\xi = 1$, the amount of consumed monomer At). After a very rapid initial increase in \overline{M}_n , an extended slower phase of quasiliving growth proceeds. The "flash" increase in \overline{M}_n at the beginning of the reaction may be due to insufficient mixing (stirring). Figure 6 is a plot of [P] versus cumulative weight of monomer consumption; the increasing number of polymer molecules indicates chain transfer to monomer i.e., a QL_{R1} system [8]. The initial

nonlinear portion of the [P] versus At plot is most probably due to chain transfer to water impurities ("H₂O") in the system. The linear portion of the [P] versus At plot provides $\overline{DP}_{n, \max}$ by

$$[P] = \frac{At}{\overline{DP}_n} = [I]_0 + \frac{1}{\overline{DP}_{n,max}}At$$

where $\overline{DP}_{n,\max}$ stands for k_p/k_{tr} . By using this equation, $[I]_0$ can be obtained by extrapolating the linear portion of the plots. Table 1 shows these data. According to these runs, the "H₂O" concentration

Cl ₄ Initiating System Using	
and CC/Ti	
"H2O"/TICI	
merization of Isobutylene with the	eous Monomer Addition ^a
I 2. Polyn	ious Gase
TABLI	Continu

5									:
San	nple	Time of sampling t (min)	Cumulative amount of consumed monomer $(mol \times 10^3)$	$\overline{\mathrm{M}}_{\mathrm{10}^{-3}} imes$	$\frac{\overline{\rm DP}}{n} \times 10^{-2}$	$ig[{f P} ig]_4 imes {f 10}^4$	$\overline{M}_{W}/\overline{M}_{\Pi}$	<u>DP</u> n, max	[I] ₀ (mol)
			$\underline{\mathbf{A}}=7.2\times104^3$	mol/mi	in; $V_0 =$	100 cm^3			
ы	6	ស	36	18.3	3,26	1.00	3.05	963	0.9
	10	10	72	24.6	4,39	1,64	1,96		
	11	15	108	26.5	4.72	2.29	1.98		
	12	20	144	31.6	5.64	2.56	1.85		
	13	25	180	24.7	6.19	2.91	1.82		
	14	30	216	35.9	6.40	3.38	1.76		
		$\mathbf{A} = 5.5 \times$	< 10^{-3} mol/min; $[I]_0 = 1$	$\times 10^{-2}$ n	nol/dm^3	cumyl chlo	oride; V ₀ =	$50~{\rm cm}^3$	
Fι	H	10	55	9.2	1.64	3.35	4.5		
	62	20	110	14.4	2.57	4.28	4.5		4.3
	ę	30	165	23.0	4.10	4.02	4.0		
	4	40	220	26.3	4,69	4.69	3.1		
	വ	50	275	40.4	7.20	3.81	2.60		
	^a TiC	$(1_4]_0 = 3.6 \times$	$< 10^{-2} \text{ mol/dm}^3$; T = -50°	C; in ev	ery expe	riment cor	l = 1	.00%.	
	1								

FIG. 7. [P] vs monomer consumption plot of polyisobutylenes prepared with the " H_2O "/TiCl₄ initiating system using continuous gaseous monomer addition (Run E, Table 2).

in the system is $\sim 1 \times 10^{-3} \text{ mol/dm}^3$ and $\overline{\text{DP}}_{n, \max}$ is around 1000 $(\overline{M}_{n, \max} \cong 56, 000)$.

Subsequent to experiments with liquid dilute monomer injection, a run was carried out in which gaseous monomer was fed into the reactor by means of a heated inlet and was continuously condensed on the surface of the cold, stirred charge (Fig. 1). It was hoped that by gaseous monomer introduction the cumulative amount of "H₂O" impurity in the reactor could be reduced and efficient mixing of the monomer with the charge could be achieved. Results are compiled in Table 2 (Runs E 9-14) and the [P] versus At plot is shown in Fig. 7. Apparently the results obtained in this experiment and those obtained with liquid dilute monomer introduction are identical within experimental error; evidently protogenic impurities reaching the system with the dilute stream of liquid monomer does not affect the polymerization.

Subsequently an experiment was carried out with the $C_6 H_5 C(CH_3)_2 CI$ /TiCl₄ initiating system by using the gaseous monomer addition technique in which the $C_6 H_5 C(CH_3)_2 CI$ initiator concentration was increased to 1×10^{-2} mol/dm³, i.e., 10 times that of the level of suspected water impurities in the system. Results are compiled in Table 2 (Runs F 1-5). According to the \overline{M}_n versus monomer input

FIG. 8. \overline{M}_n vs monomer consumption plot of polyisobutylenes obtained by CC/TiCl₄ initiating system using continuous gaseous monomer addition (Run F, Table 2).

plot shown in Fig. 8, \overline{M}_n 's increased linearly with monomer introduction and [P] remained essentially unchanged, suggesting quasiliving conditions and the practical absence of chain transfer (QL_{R0}).

The broad MWD values, however, may reflect the presence of two propagating centers, $\sim C^{\bigoplus} (CH_3)_2 \operatorname{TiCl}_4OH^{\ominus}$ and $\sim C^{\bigoplus} (CH_3)_2 \operatorname{TiCl}_5^{\ominus}$

In sum, quasiliving carbocationic polymerization of isobutylene may be achieved by the use of "H₂O"/TiCl₄ and C₆H₅C(CH₃)₂Cl/ TiCl₄ initiating systems in n-hexane/methylene chloride solvent mixtures by carefully controlled slow and continuous monomer addition. With the "H₂O"/TiCl₄ system "flash" polymerizations at the beginning of the reactions prevented controlled slow growth and although \overline{M}_n increased linearly with monomer consumption after this initial jump in \overline{M}_n , chain transfer could not be avoided, leading to limited $\overline{DP}_{n, max}$ values.

Due to unavoidable traces of water in the charges, the $C_6 H_5 C(CH_3)_2 - Cl/TiCl_4$ system was most likely always contaminated with "H₂O"/ TiCl₄, giving rise to two propagating species. By the use of a large excess of $C_6 H_5 C(CH_3)_2 Cl$ initiator, quasiliving polymerization has been achieved and chain transfer could be virtually eliminated. It is predicted that in the total absence of moisture, quasiliving polymerization of isobutylene with a single propagating active center could be achieved by the use of the $C_6 H_5 C(CH_3)_2 Cl/TiCl_4$ initiating system in n-hexane/methylene chloride solvent at $-50^{\circ}C$.

ACKNOWLEDGMENTS

Financial aid by the National Science Foundation (INT-76-03952) and the Hungarian Academy of Sciences is gratefully acknowledged.

REFERENCES

- R. Faust, A. Fehérvári, and J. P. Kennedy, J. Macromol. Sci.-Chem., A18(9), 1209 (1982).
- [2] M. Sawamoto and J. P. Kennedy, Ibid., A18(9), 1275 (1982).
- [3] M. Sawamoto and J. P. Kennedy, *Ibid.*, A18(9), 1293 (1982).
- [4] J. Puskás, G. Kaszás, J. P. Kennedy, T. Kelen, and F. Tüdös, Ibid., A18(9), 1245 (1982).
- [5] J. Puskás, G. Kaszas, J. P. Kennedy, T. Kelen, and F. Tüdös, Ibid., A18(9), 1315 (1982).
- [6] J. P. Kennedy and R. A. Smith, J. Polym. Sci., Polym. Chem. Ed., 18, 1523 (1980).
- [7] D. W. Grattan and P. H. Plesch, J. Chem. Soc., Perkin Trans.
 2, p. 1734 (1977).
- [8] J. P. Kennedy, T. Kelen, and F. Tüdös, J. Macromol. Sci.-Chem., A18(9), 1189 (1982).
- [9] A. Gaudini and H. Cheradame, <u>Adv. Polym. Sci.</u>, <u>34/35</u>, 1 (1981).
- [10] H. C. Brown and R. S. Fletcher, J. Am. Chem. Soc., 71, 1845 (1949).
- [11] J. P. Kennedy and S. Rengachary, Adv. Polym. Sci., 14, 1 (1974).
- [12] J. P. Kennedy, S. Y. Huang, and S. C. Feinberg, J. Polym. Sci., Polym. Chem. Ed., 15, 2864 (1977).
- [13] V. Mayer, V. Gutman, and W. Gerger, Monatsh. Chem., 106, 1235 (1975).
- [14] R. Wondraczek, J. P. Kennedy, and R. F. Storey, J. Polym. Sci., Polym. Chem. Ed., 20, 43 (1982).